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Abstract
A new kind of deformed calculus (the D-deformed calculus) that takes place
in fractional-dimensional spaces is presented. The D-deformed calculus is
shown to be an appropriate tool for treating fractional-dimensional systems
in a simple way and quite analogous to their corresponding one-dimensional
partners. Two simple systems, the free particle and the harmonic oscillator
in fractional-dimensional spaces, are reconsidered in the framework of the D-
deformed quantum mechanics. Confined states in a D-deformed quantum well
are studied. D-deformed coherent states are also found.

PACS numbers: 03.65.−w, 03.65.Ca, 03.65.Fd

1. Introduction

Fractional-dimensional space approaches have been shown to be useful in the study of several
physical systems. Theoretical schemes dealing with non-integer space dimensionalities have
frequently been considered in the study of critical phenomena (see for instance [1, 2]) and of
fractal structures [3] or in modelling semiconductor heterostructure systems [4–8].

In the above-mentioned schemes, the fractional dimensionality does not refer to the real
space, but to an auxiliary effective environment used to describe the real system. Nevertheless,
the idea of a real spacetime having a dimension slightly different from four has also been
considered by several authors [9–12]. Actually, the deviations of the spacetime dimension
from four have been found to be very small [9–12]. However, the question whether the
dimension of the spacetime is an integer or a fractional number constitutes a basic problem
not only for its conceptual significance, but also because the possibility that the spacetime
dimension is different from four may lead to interesting consequences (e.g. it is well known
that a deviation of the spacetime dimension from the value four eliminates the logarithmic
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divergences of quantum electrodynamics, independently of how small the deviation from four
may be [13]).

Recently, the existence of some similarities between the so-called N-body Calogero
models and the problem corresponding to a fractional-dimensional harmonic oscillator of a
single degree of freedom [14] has been shown. This result, together with the remarkable fact
that fractional-dimensional bosons can be considered as generalized parabosons [14], suggests
new potential applications of the non-integer-dimensional space approaches.

It was shown in [14] that the fractional-dimensional Bose operators together with the
reflection operator form an R-deformed Heisenberg algebra with a deformation parameter
depending on the dimension of the space. Deformations of the Heisenberg algebra leading
to the so-called q-deformed quantum mechanics have been extensively investigated (see for
instance [15–18]). Taking into account the results obtained in [14], we develop in the present
paper a new deformed calculus (the D-deformed calculus) in analogy to the q-deformed
calculus commonly treated in the literature [18–21]. The new calculus allows us to express
and solve problems concerning fractional-dimensional systems in a simple way and quite
analogous to the corresponding undeformed (D = 1) problems. The paper is organized as
follows. In section 2 we introduce the D-deformed calculus. The problems corresponding to
the free particle and the harmonic oscillator in fractional-dimensional space were studied in
[14]. We reconsider these problems in sections 3 and 4 respectively, but now from the point
of view of the D-deformed quantum mechanics. Of course, the final results in these sections
coincide with the results obtained in [14]. However, in terms of the new D-deformed calculus,
the above-mentioned problems can be solved immediately and in an elegant way. In section 5
the single-particle confined states in a fractional-dimensional quantum well are studied. The
dimensional dependence of the eigenenergies corresponding to the ground and to the first
excited states is shown. In both cases an increase of the energies as the dimension increases is
observed. The probability density function describing the motion of the particle confined in
the D-deformed quantum well is also studied for varying the dimensionality. The D-deformed
coherent states are found in section 6 and conclusions are summarized in section 7.

2. D-deformed calculus

It is well known that the one-dimensional momentum operator is given by

P = 1

i

d

dξ
(1)

where we have taken h̄ = 1. However, in a fractional-dimensional space, because of the
inclusion of the integration weight [22]

σ(D)

2
|ξ |D−1 σ(D) = 2πD/2


(D/2)
(2)

this operator is no longer Hermitian. Therefore, a more general momentum operator has to be
defined for systems in fractional-dimensional spaces. Starting with the Wigner commutation
relations for the canonical variables of a Bose-like oscillator of a single degree of freedom,
the fractional-dimensional momentum operator has been found to be [14],

P = 1

i

d

dξ
+ i
(D − 1)

2ξ
R − i

(D − 1)

2ξ
(3)

where R is the reflection operator.
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The momentum operator (equation (3)) suggests a deformation of quantum mechanics
in fractional-dimensional spaces. Indeed, we can introduce a new D-deformed derivative
operator

dD
dDξ

= d

dξ
+
(D − 1)

2ξ
(1 − R) (4)

and then the fractional-dimensional momentum operator (equation (3)) can be rewritten in the
standard form

P = 1

i

dD
dDξ

. (5)

Thus the D-deformed annihilation and creation operators can be defined in the following way,

aD = 1√
2

(
ξ +

dD
dDξ

)
a
†
D = 1√

2

(
ξ − dD

dDξ

)
. (6)

The action of these operators is given as [14]

aD|0〉 = 0 (7)

aD|2n〉 =
√

2n|2n− 1〉 aD|2n + 1〉 =
√

2n + D|2n〉 (8)

a
†
D|2n〉 =

√
2n + D|2n + 1〉 a

†
D|2n + 1〉 =

√
2n + 2|2n + 2〉 (9)

where n = 0, 1, 2, 3, . . . .
Now by introducing the corresponding D-factor (analogue to the q-factor) as

[n]D = n +
(D − 1)

2
(1 − (−1)n) (10)

the equations (8) and (9) can be rewritten in the usual form

aD|n〉 =
√

[n]D|n− 1〉 (11)

and

a
†
D|n〉 =

√
[n + 1]D|n + 1〉 (12)

respectively.
Taking into account equation (10) and in analogy to the q-deformed standard procedures

we can define a D-deformed factorial function as

[n]D! = [n]D[n− 1]D · · · [1]D[0]D! =




2n
(
n
2

)
!


(
n+D

2

)

(D/2)

for n even

2n
(
n− 1

2

)
!


(
n +D + 1

2

)

(D/2)

for n odd

. (13)

This D-deformed factorial function is a particular case of the generalized factorial function
[23].

The eigenstates |n〉 of the operator

ND|n〉 = n|n〉 ND = 1
2 {a†D, aD} −D/2 (14)

may be obtained by repeated applications of a†D on the vacuum state |0〉

|n〉 = (a
†
D)

n

√
[n]D!

|0〉. (15)

It is easy to prove that in this Fock space, the relations

a
†
DaD = [n]D aDa

†
D = [n + 1]D (16)

take place.
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From the definition of the D-deformed derivative (equation (4)) we can introduce a D-
deformed integration, so that if

dDf (ξ)

dDξ
= F(ξ) (17)

then

f (ξ) =
∫
F(ξ) dDξ + const. (18)

With the aim of finding the appropriate expression for the D-deformed integration, we observe
that

dDf (ξ)

dDξ
=

[
1 +

(D − 1)

2ξ
(1 − R)

∫
dξ

]
df (ξ)

dξ
= F(ξ) (19)

and hence

df (ξ)

dξ
=

[
1 +

(D − 1)

2ξ
(1 − R)

∫
dξ

]−1

F(ξ). (20)

From the equation given above it follows

f (ξ) =
∫
F(ξ) dDξ =

∞∑
n=0

[
−

∫
dξ
(D − 1)

2ξ
(1 − R)

]n ∫
dξ F (ξ). (21)

This expression may be rewritten as∫
F(ξ) dDξ =

∞∑
n=0

(−1)nIn (22)

where the terms In satisfy the following recurrence formula

In+1 =
∫

(D − 1)

2ξ
(1 − R)In dξ I0 =

∫
F(ξ) dξ. (23)

With respect to the D-deformed calculus induced by the fractional-dimensional integration
weight (equation (2)), the following identities can be easily demonstrated

dD[f (ξ)g(ξ)]

dDξ
= g(ξ)

dDf (ξ)

dDξ
+

dDg(ξ)

dDξ
Rf (ξ) +

dg(ξ)

dξ
(1 − R)f (ξ) (24)

and after integrating the above equation∫
g(ξ)

dDf (ξ)

dDξ
dDξ = f (ξ)g(ξ) −

∫
dDg(ξ)

dDξ
Rf (ξ) dDξ −

∫
dg(ξ)

dξ
(1 − R)f (ξ) dDξ.

(25)

One should note that if either f (ξ) or g(ξ) is an even function of ξ , equations (24) and
(25) reduce to a D-deformed Leibnitz rule and a D-deformed formula of integration by parts,
respectively. This is a consequence of the fact that the D-deformed derivative acts on even
functions as the ordinary derivative.

3. D-deformed free particle

The eigenstates of the momentum operator corresponding to a free particle of a single degree
of freedom in a fractional-dimensional space can be found now in terms of the D-deformed
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calculus introduced in the previous section. Thus, the eigenstates of the fractional-dimensional
momentum operator are determined by the following equation

P�p = −i
dD�p

dDξ
= p�p. (26)

The corresponding eigenfunctions are immediately found to be

�p = ApED(ipξ) (27)

where ED(x) represents the D-deformed exponential function (see appendix A). The
normalization factor Ap can be found from the orthonormalization condition

〈�p|�p′ 〉 = σ(D)

2
lim
γ→0

∫ ∞

−∞
e−γ ξ 2

�∗
p(ξ)�p′(ξ)|ξ |D−1 dξ = δ(p − p′) (γ > 0) (28)

in a similar way as in [14]. After the corresponding calculations we arrive at the following
expression

Ap = 1

2D/2−1
(D/2)

√
pD−1

2σ(D)
. (29)

One should note that the eigenfunctions�p describing the motion of a free particle of a single
degree of freedom in a fractional-dimensional space can be considered as D-deformed plane
waves and they reduce to the ordinary plane de Broglie waves when D = 1.

4. D-deformed harmonic oscillator

The eigenfunctions in the coordinate representation corresponding to the D-deformed
harmonic oscillator can be derived from equation (15) without much difficulty. First we
consider the vacuum state |0〉 which satisfies equation (7). Then, using the expression of aD

in the coordinate representation (equation (6)) we have the following D-deformed differential
equation (

dD
dDξ

+ ξ

)
χ0 = 0 (30)

where χ0 = 〈ξ | 0〉 represents the eigenfunction of the ground state of the D-deformed
harmonic oscillator. Now by solving equation (30) we found that

χ0 = C0 exp[−ξ2/2] (31)

where C0 is a normalization factor. From the normalization condition

σ(D)

2

∫ ∞

−∞
|χ0|2|ξ |D−1 dξ = 1 (32)

the normalization constant is found to be

C0 = 1

πD/4
. (33)

Once the ground state is found, the excited states may be calculated from equation (15). Thus
the excited states are determined by

χn = 〈ξ | n〉 = C0√
[n]D!

[
1√
2

(
ξ − dD

dDξ

)]n
exp[−ξ2/2]. (34)

Now if we take into account that

(−1)n exp[ξ2/2]

(
dD

dDξ

)n

exp[−ξ2] =
(
ξ − dD

dDξ

)n

exp[−ξ2/2] (35)
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a relation that can be demonstrated by induction, the excited states in coordinate representation
can be written as

χn = 〈ξ | n〉 = [n]D! exp[−ξ2/2]

n!
√
πD/22n[n]D!

HD
n (ξ) (36)

where

HD
n (ξ) = n!

[n]D!
(−1)n exp[ξ2]

(
dD

dDξ

)n

exp[−ξ2] (37)

can be understood as D-deformed Hermite polynomials. In fact the polynomials HD
n (ξ)

defined above are a particular case of the generalized Hermite polynomials studied in [23].
It is worth remarking that if D = 1 the results obtained in the present section reduce to

the well-known results corresponding to the undeformed one-dimensional case.

5. Confined states in a D-deformed quantum well

In the present section we will study the motion of a particle confined in a fractional-dimensional
quantum well defined by the following potential

V (ξ) =
{

0 if |ξ | < 1/2
∞ otherwise

(38)

where we have taken a unitary well width (L = 1). The corresponding Schrödinger equation
may be written as[

−1

2

d2
D

dDξ2
+ V (ξ)

]
�n(ξ) = En�n(ξ). (39)

In terms of the introduced D-deformed calculus, the equation above can be immediately solved.
The wavefunctions are given by

�n(ξ) =
{
Aeven
n COSDknξ for even states

Aodd
n SINDknξ for odd states

(40)

where

kn =
√

2En (41)

and COSD X, SIND X represent the D-deformed cosine and sine functions, respectively (see
appendix). The constants Aeven

n and Aodd
n are normalization factors corresponding to even and

odd states respectively.
Now the eigenenergies can be easily computed from the boundary conditions

COSD
kn

2
= 0 (42)

for even states and

SIND

kn

2
= 0 (43)

for odd states.
One should note that the D-deformed calculus allows us to express the fractional-

dimensional problems in a very simple way and quite analogous to the corresponding
undeformed (D = 1) problems.

The D-dependence of the energies corresponding to the ground state (n = 1) and to the
first excited state (n = 2) is shown in figure 1. The eigenenergies increase as the dimension
increases. This behaviour has also been observed in other fractional-dimensional systems2

(see for instance [4, 14]).
2 The energies of the fractional-dimensional harmonic oscillator and the hydrogenic atom are given byEn = n+D/2
and En = −4

(2n+D− 3)2
, respectively. In both cases the energy increases when the dimension increases.
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Figure 1. The eigenenergies corresponding to the ground (n = 1) and to the first excited (n = 2)
states of a particle confined in a D-deformed quantum well as a function of the dimensionality.
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Figure 2. Position dependence of the probability density ρn corresponding to a particle confined
in a D-deformed quantum well and for different values of the dimensional parameter: (a) for the
ground state (n = 1) and (b) for the first excited state (n = 2).

In figure 2 we present the probability density

ρn(ξ) = σ(D)

2
|ξ |D−1|�n|2 (44)

corresponding to n = 1 (a) and to n = 2 (b) as a function of the pseudo-coordinateξ for different
values of the dimensionality. In both cases one can appreciate the existence of compression
(spreading) of the probability density when D < 1 (D > 1). We remark that this behaviour
is not a consequence of the form of the wavefunctions but of the presence of the integration
weight in the probability density. Indeed, the integration weight acts as an attractive (repulsive)
barrier when D < 1 (D > 1). It diverges at the origin of pseudo-coordinates when D < 1 (i.e.
when D < 1 all the volume of the space is almost concentrated around ξ = 0) and causes a
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strong localization of the probability density (see figure 2(a)). In the case of the first excited
state, however, because of the odd parity the probability density becomes zero at the origin of
pseudo-coordinate and there is no longer localization in the central region.

It is worth noting that in the present case when D > 1, the maximum of the probability
density increases as the dimension increases (see figure 2), in contrast to the behaviour
observed in the fractional-dimensional harmonic oscillator (see figures 2(b) and 3 of [14]).
This is because as the dimensionality increases, the integration weight becomes more and
more repulsive favouring tunnelling through the harmonic barriers. Consequently, the particle
becomes more delocalized and the maximum of the probability density decreases. In the
present case, however, the quantum well is considered infinitely deep and tunnelling is
suppressed. The particle is then compressed between the well barriers and the repulsive
integration weight leading to an increase in the maximum of the probability density.

6. D-deformed coherent states

We now observe the spectrum problem corresponding to a fractional-dimensional annihilation
operator aD by using the rules of the D-deformed calculus. The eigenstates of aD,

aD|α〉 = α|α〉 (45)

are a D-deformation of the usual coherent states. The solution of equation (45) is given by

|α〉 = Aα

∞∑
n=0

αn√
[n]D!

|n〉. (46)

From the normalization condition 〈α|α〉 = 1, the normalization constant is found to be

Aα = 1√
ED(|α|2)

. (47)

As usual, equation (46) can be written in terms of the vacuum state as follows

|α〉 = 1√
ED(|α|2)

ED(αa
†
D)|0〉. (48)

Once we have found the expression of the D-deformed coherent states in the Fock
representation, we can easily obtain its expression in the coordinate representation by using
the relation

&α(ξ) = 〈ξ | α〉 =
∞∑
n=0

〈ξ | n〉〈n | α〉. (49)

Now by considering equations (36) and (46) we arrive at the following result

&α(ξ) = exp[−ξ2/2]√
ED(|α|2)

1

πD/4

∞∑
n=0

αn√
2nn!

HD
n (ξ). (50)

From equation (46), the probability distribution of a D-deformed coherent state in the Fock
representation is found to be

|〈n | α〉|2 = 1

ED(|α|2)
(|α|2)n
[n]D!

(51)

i.e. a D-deformation of the Poisson distribution.
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7. Conclusions

Summing up, taking into account recent developments in the mathematical physics of the
fractional-dimensional space and in analogy to the q-deformed calculus we have developed
a new deformed calculus that we have called D-deformed calculus. Some simple fractional-
dimensional systems, the free particle, the harmonic oscillator and the particle confined in a
quantum well, are studied in the framework of the D-deformed quantum mechanics. Finally,
the D-deformed coherent states are found.

Appendix

Here we will study the properties of some D-deformed functions. From the definition of the
D-deformed derivative (equation (4)) it is easy to find that

dDξn

dDξ
= [n]Dξn−1. (A1)

On the other hand, from the definition of the D-deformed integration (equation (22)), we also
found ∫

ξn dDξ = ξn+1

[n + 1]D
+ const. (A2)

In this way, one can introduce the D-deformed exponential function as follows

ED(ξ) =
∞∑
n=0

ξn

[n]D!
. (A3)

From equation (A3) and making use of the equations (A1) and (A2) one can demonstrate in a
straightforward manner that

dDED(λξ)

dDξ
= λED(λξ) λ = const. (A4)

and consequently∫
ED(λξ) dDξ = ED(λξ)

λ
+ const. (A5)

Actually, the D-deformed exponential function is a particular case of the generalized
exponential function defined in [23] and can be represented as follows

ED(ξ) = exp[ξ ]&

(
D − 1

2
,D,−2ξ

)
(A6)

or

ED(ξ) = 
(D/2)

(
ξ

2

)1−D/2
[ID/2−1(ξ) + ID/2(ξ)] (A7)

where&(a, b, x) and Iν(x) are the confluent hypergeometric function and the modified Bessel
function respectively.

We can also introduce D-deformed cosine and sine functions through the following
definitions

COSDξ =
∞∑
n=0

(−1)nξ2n

[2n]D!
= 
(D/2)

(
ξ

2

)1−D/2
JD/2−1(ξ) (A8)
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and

SINDξ =
∞∑
n=1

(−1)n−1ξ2n−1

[2n− 1]D!
= 
(D/2)

(
ξ

2

)1−D/2
JD/2(ξ) (A9)

where Jν(x) represents the Bessel function. Thus, the following identities can be easily
verified

ED(±iξ) = COSDξ ± iSINDξ (A10)

and
dDCOSDξ

dDξ
= −SINDξ

dDSINDξ

dDξ
= COSDξ (A11)

It is straightforward to check that all the definitions and equations given in this appendix
recover the corresponding undeformed expressions when D = 1, as they must.
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[8] Reyes-Gómez E, Matos-Abiague A, Perdomo-Leiva C A, de Dios-Leyva M and Oliveira L E 2000 Phys. Rev.

B 61 13104
[9] Zeilinger A and Svozil K 1985 Phys. Rev. Lett. 54 2553
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